
LETTERS TO THE EDITOR 

COMMENTS ON "ELECTRON TRANSITIONS 
ON DEEP DIRAC LEVELS I" 

In a recent paper,1 the authors claim the existence of 
deeply bound electron energy levels in hydrogen-like atoms 
resulting from previously neglected solutions of both the 
relativistic Schrodinger and Dirac equations. In this letter, we 
show that these solutions are unphysical, and thus, these 
deeply bound energy levels cannot exist. 

The radial part of the relativistic Schrodinger equation 
for a point Coulomb potential e<t>(r) = —Ze2/r is2 
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and E and m are the total energy and mass of the electron, 
respectively. We consider solutions of this equation for / = 0 
only because the energies corresponding to I > 0 must be 
higher than the lowest 1 = 0 energy because of the centrifu-
gal barrier. It is easily seen that as p 0, the wave function 
\p has the behavior 

where 

= ± a - 7 2 > , / 2 

From Eq. (2), 
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and the boundary condition \(/(p-+ oo) = 0 gives X± = n' + 
+ 1, where ri is a positive integer. Furthermore, because 

7 = Ze2/hc « Z/137 « 1, 

- - I ± (J - y 2 ) > (6) 
the energy levels E+ and E_ are given by 
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and 
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Note that Eq. (7) gives the correct observed binding en-
ergy of E+ — mc2 = —13.6 eV for nf = 0 and Z = 1, and 
Eq- (8) gives a binding energy of E- — mc2 « mc2(y — 1) « 
—510 keV, so that if the solutions corresponding to are 
acceptable, there exist deeply bound electron states. 

Our solutions, Eqs. (7) and (8), for the relativistic 
Schrodinger equation, Eq. (1), are similar to that of Maly and 
Vavra1 [their Eq. (24)] for the Dirac equation.2 The same 
shortcoming, detailed below, applies to their solution; how-
ever, it is less transparent than our example because the Dirac 
equation involves a set of coupled differential equations.2 

We can model a realistic situation by assuming that the 
potential e<t>(r) is given by 

e<t*(r) = 

Ze^ 
a 

Ze2 

, r < a 

(9) 
, r>a, 

where a is the nuclear radius. The wave function x ( 0 = r\p(r) 
then has the following form, as a 0: 

f AKr , r < a 
X ( r ) = W + r * , . (10) 

where ( h c ) 2 K 2 = (E+ Ze2/a)2 - m2cA. Note that in Eq. (10), 
we have used the regular solution \ = A sin Kr for the inte-
rior wave function, which is zero at the origin, as it must be 
for a finite potential, and the form of the exterior wave func-
tion comes from the analytic solution of Eq. (1). 

Equating logarithmic derivatives 
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so that for a physical wave function, as a 0, the solution 
corresponding to 5_ does not contribute. However, because 
of the finite size of the nucleus, the wave function consists 
of a large component corresponding to s+ and a small com-
ponent corresponding to 5_ with a binding energy that is 
thus very close to the original binding energy E+ — mc2. 
For instance, for the case of a proton, the proton radius 
a « 1 fm, Z = 1, and E « E+ = mc2 - 13.6 eV; therefore, 
a « 3.78 x 10"5 fm"1 , and hence, C/B ® - 0 . 2 x 10~8. 

Furthermore, we note that their electron orbits of ra-
dius - 5 x 10"13 cm are 50 times smaller than muonic orbits 
of 250 x 10"13 cm. If such orbits existed, upon collision, 
they would produce fusion at a much higher rate than muon-
catalyzed fusion. So, their proposed solution does not get 
around the nuclear ash problem. 

In summary, we have shown that the deep Dirac orbits 
do not exist. They are an artifact due to the incorrect use of 
the irregular solution of the relativistic Dirac equation and 
the total neglect of the regular solution. Furthermore, even 
if such orbits existed, this does not keep the problem in the 
domain of exotic chemistry with the avoidance of nuclear ef-
fects and the nuclear ash problem. Such tight orbits would 
be expected to produce considerably high fusion rates. 
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RESPONSE TO "COMMENTS 
ON 'ELECTRON TRANSITIONS 
ON DEEP DIRAC LEVELS I' " 

The central point of our response to Ref. 1 is as fol-
lows. Let us assume that \pn(x) is a solution of the time-
independent portion of the Schroedinger equation for energy 
En. The authors of Ref. 1 indicate that if \pn(x) and i p m ( x ) 
are solutions, then A\j/n(x) + B\l/m(x) is also the solution, 
thus completely disregarding the fact that n and m are two 
different quantum states with different energies En and Em\ 
\pn(x) and \j/m(x) are the solutions of two different differen-
tial equations. The complete solution of the time-dependent 
Schroedinger equation for a particle in the quantum state 
\pn (x) of energy E„ is 

f j x , t) = exp [-i(En/h)tWn(x) . (1) 

The probability distribution is independent of time; 
thus, the particle stays in the energy state En indefinitely. 
Therefore, it is not a portion of time in the energy state Emy 
as the authors indicate when they write the wave function 
[Atn(x) + B*m(x)]. 

Specifically, our response to their criticism is the 
following: 

1. The authors1 combine in a linear combination two 
solutions corresponding to s+ and s~ parameters. They cor-
respond to two different quantum states, which, in turn, 
correspond to two different differential equations and two 
different energy levels. To use the linear combination \p = 
Bps +1 + Cps + 1 as a general wave function would be cor-
rect only if both terms Bps + 1 and Cps + 1 would be the so-
lution of the same differential equation. However, this is not 
the case. The equation, which has to be solved, is Eq. (9) 
in Ref. 2: 

p2L" + p[2(s+ 1) - p]L 
+ [ p ( \ - s - 1) + 5 ( 5 + 1) - / ( / + 1) + 7 2 ] L = 0 . 

(2) 

This equation for p = 0 is zero only if it is satisfied: 

5 ( 5 + 1 ) + 7 2 - / ( / + 1) = 0 , ( 3 ) 

which gives the solution [see Schiff3 Eq. (51.19) or Eq. (10) 
in Ref. 2]: 

J = - i ± [ ( / + i ) 2 - 7 2 ] 2 i 1/2 (4) 
The aforementioned s+ and s~ correspond to two different 
signs in Eq. (4). Because s+ and s~ are clearly different, 
Eq. (2) with inserted 5 = 5 + is different from Eq. (2) with in-
serted 5 = 5"; the resulting energy levels Es+ or Es- are dif-
ferent for s+ or s~ [see Eqs. (12) and (5) of Ref. 2]. Thus, 
one cannot use ^ = Bps +1 + Cps + 1 as the most general 
wave function [Bps + 1 contains Es+ and Cps + 1 contains 
Es- inside p = a(E)r]. 

2. Equations (9) of Ref. 1 define the potential inside and 
outside the nucleus: 

e<t>(r) = 
—Ze2/a for r < a 

—Ze2/r for r > a . 
(5) 

The potential outside the nucleus is correct, but the poten-
tial inside the nucleus is only an approximation. However, 
two errors appear in Eq. (10) of Ref. 1: 

x(r)=rR(r) 
f AKr for r < a 

Bps++X + Cps +1 for r > a , (6) 

where h2c2K2 = (E + Ze2/a)2 - m2c4 and / = 0. First, 
the correct solution of the differential equation for r < a is 
X (r) = A sin(Ar) and not AKr, as used in Eqs. (10) and (12) 
of Ref. 1 [this can be derived from Eq. (51.14) of Schiff3 by 
using / = 0 and the potential of Eq. (5)j. Second, as we ex-
plained earlier, for r > a, the solutions are either x(^) = 
CxrRx{p) for 5 = 5+ or x(r) = C2rR2(p) for 5 = 5" [#(p) 
is defined by Eqs. (7) and (8) of Ref. 2] and not a linear com-
bination of these two solutions as shown in Eq. (6). 

3. The authors of Ref. 1 have also not realized that the 
variable p = a (E)r contains energy levels Es+ or Es- inside 
parameter a(E) [see Eq. (5) of Ref. 2], and p in Eq. (6) is 
not the same for s+ or s~ states. 
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